25 research outputs found

    Event detection, tracking, and visualization in Twitter: a mention-anomaly-based approach

    Full text link
    The ever-growing number of people using Twitter makes it a valuable source of timely information. However, detecting events in Twitter is a difficult task, because tweets that report interesting events are overwhelmed by a large volume of tweets on unrelated topics. Existing methods focus on the textual content of tweets and ignore the social aspect of Twitter. In this paper we propose MABED (i.e. mention-anomaly-based event detection), a novel statistical method that relies solely on tweets and leverages the creation frequency of dynamic links (i.e. mentions) that users insert in tweets to detect significant events and estimate the magnitude of their impact over the crowd. MABED also differs from the literature in that it dynamically estimates the period of time during which each event is discussed, rather than assuming a predefined fixed duration for all events. The experiments we conducted on both English and French Twitter data show that the mention-anomaly-based approach leads to more accurate event detection and improved robustness in presence of noisy Twitter content. Qualitatively speaking, we find that MABED helps with the interpretation of detected events by providing clear textual descriptions and precise temporal descriptions. We also show how MABED can help understanding users' interest. Furthermore, we describe three visualizations designed to favor an efficient exploration of the detected events.Comment: 17 page

    ALMA observations of polarized emission toward the CW Tau and DG Tau protoplanetary disks: constraints on dust grain growth and settling

    Get PDF
    We present polarimetric data of CW Tau and DG Tau, two well-known Class II disk/jet systems, obtained with the Atacama Large Millimeter/submillimeter Array at 870 μ\mum and 0."2 average resolution. In CW Tau, the total and polarized emission are both smooth and symmetric, with polarization angles almost parallel to the minor axis of the projected disk. In contrast, DG Tau displays a structured polarized emission, with an elongated brighter region in the disk's near side and a belt-like feature beyond about 0."3 from the source. At the same time the total intensity is spatially smooth, with no features. The polarization pattern, almost parallel to the minor axis in the inner region, becomes azimuthal in the outer belt, possibly because of a drop in optical depth. The polarization fraction has average values of 1.2% in CW Tau and 0.4% in DG Tau. Our results are consistent with polarization from self-scattering of the dust thermal emission. Under this hypothesis, the maximum size of the grains contributing to polarization is in the range 100 - 150 μ\mum for CW Tau and 50 - 70 μ\mum for DG Tau. The polarization maps combined with dust opacity estimates indicate that these grains are distributed in a geometrically thin layer in CW Tau, representing a settling in the disk midplane. Meanwhile, such settling is not yet apparent for DG Tau. These results advocate polarization studies as a fundamental complement to total emission observations, in investigations of the structure and the evolution of protoplanetary disks.Comment: 8 pages, 5 figures. Accepted for publication in ApJ Letter

    Herschel observations of EXtraordinary Sources: Analysis of the full Herschel/HIFI molecular line survey of Sagittarius B2(N)

    Get PDF
    A sensitive broadband molecular line survey of the Sagittarius B2(N) star-forming region has been obtained with the HIFI instrument on the Herschel Space Observatory, offering the first high-spectral resolution look at this well-studied source in a wavelength region largely inaccessible from the ground (625-157 um). From the roughly 8,000 spectral features in the survey, a total of 72 isotopologues arising from 44 different molecules have been identified, ranging from light hydrides to complex organics, and arising from a variety of environments from cold and diffuse to hot and dense gas. We present an LTE model to the spectral signatures of each molecule, constraining the source sizes for hot core species with complementary SMA interferometric observations, and assuming that molecules with related functional group composition are cospatial. For each molecule, a single model is given to fit all of the emission and absorption features of that species across the entire 480-1910 GHz spectral range, accounting for multiple temperature and velocity components when needed to describe the spectrum. As with other HIFI surveys toward massive star forming regions, methanol is found to contribute more integrated line intensity to the spectrum than any other species. We discuss the molecular abundances derived for the hot core, where the local thermodynamic equilibrium approximation is generally found to describe the spectrum well, in comparison to abundances derived for the same molecules in the Orion KL region from a similar HIFI survey.Comment: Accepted to ApJ. 64 pages, 14 figures. Truncated abstrac

    13C—methyl formate : observations of a sample of high mass starforming regions including Orion—KL and spectroscopic characterization

    Get PDF
    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic centre for methyl formate, HCOOCH3, and its isotopologues H13COOCH3 and HCOO13CH3. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the 13C-methyl formate isotopologue HCOO13CH3 towards the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2 and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the 13C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the 12C/13C isotope ratio in methyl formate toward Orion-KL Compact Ridge and Hot Core-SW components (68.4±10.1 and 71.4±7.8, respectively) are, for both the 13C-methyl formate isotopologues, commensurate with the average 12C/13C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the 12C/13C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H13COOCH3 and HCOO13CH3 species. New spectroscopic data for both isotopomers H13COOCH3 and HCOO13CH3, presented in this study, has made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.This work was supported by the National Science Foundation under grant 1008800. We are grateful to the Ministerio de Economia y Competitividad of Spain for the financial support through grant No. FIS2011-28738-C02-02 and to the French Government through grant No. ANR-08-BLAN-0054 and the French PCMI (Programme National de Physique Chimie du Milieu Interstellaire). This paper makes use of the following ALMA data: ADS/JAO. ALMA#2011.0.00009.SV.ALMAis a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. C.F. thanks Dahbia Talbi, Eric Herbst, and Anthony Remijan for enlightening discussions. Finally, we thank the anonymous referee for helpful comments

    Implementation of ultrasonic sensing for high resolution measurement of binary gas mixture fractions

    Get PDF
    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions

    Hot Corinos Chemical Diversity: Myth or Reality?

    Get PDF
    After almost 20 years of hunting, only about a dozen hot corinos, hot regions enriched in interstellar complex organic molecules (iCOMs), are known. Of them, many are binary systems with the two components showing drastically different molecular spectra. Two obvious questions arise. Why are hot corinos so difficult to find and why do their binary components seem chemically different? The answer to both questions could be a high dust opacity that would hide the molecular lines. To test this hypothesis, we observed methanol lines at centimeter wavelengths, where dust opacity is negligible, using the Very Large Array interferometer. We targeted the NGC 1333 IRAS 4A binary system, for which one of the two components, 4A1, has a spectrum deprived of iCOMs lines when observed at millimeter wavelengths, while the other component, 4A2, is very rich in iCOMs. We found that centimeter methanol lines are similarly bright toward 4A1 and 4A2. Their non-LTE analysis indicates gas density and temperature (2×106\geq2\times10^6 cm3^{-3} and 100--190 K), methanol column density (1019\sim10^{19} cm2^{-2}) and extent (\sim35 au in radius) similar in 4A1 and 4A2, proving that both are hot corinos. Furthermore, the comparison with previous methanol line millimeter observations allows us to estimate the optical depth of the dust in front of 4A1 and 4A2, respectively. The obtained values explain the absence of iCOMs line emission toward 4A1 at millimeter wavelengths and indicate that the abundances toward 4A2 are underestimated by \sim30\%. Therefore, centimeter observations are crucial for the correct study of hot corinos, their census, and their molecular abundances.Comment: 9 pages, 3 figures, 2 Tables - Published in ApJ Letter

    LES INTERRUPTIONS MEDICALES DE GROSSESSE POUR MOTIFS PSYCHIATRIQUES MATERNELS (ETUDE DE 24 DOSSIERS)

    No full text
    BESANCON-BU Médecine pharmacie (250562102) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Hydrogen molecular ions and the violent birth of the Solar System

    No full text
    International audienceMany pieces of evidence indicate that the Solar System youth was marked by violent processes: among others, high fluxes of energetic particles (greater than or equal to 10 MeV) are unambiguously recorded in meteoritic material, where an overabundance of the short-lived 10Be products is measured. Several hypotheses have been proposed to explain from where these energetic particles originate, but there is no consensus yet, mostly because of the scarcity of complementary observational constraints. In general, the reconstruction of the past history of the Solar System is best obtained by simultaneously considering what we know of it and of similar systems nowadays in formation. However, when it comes to studying the presence of energetic particles in young forming stars, we encounter the classical problem of the impossibility of directly detecting them toward the emitting source (analogously to what happens to galactic cosmic rays). Yet, exploiting the fact that energetic particles, such as cosmic rays, create H3 + and that an enhanced abundance of H3 + causes dramatic changes on the overall gas chemical composition, we can indirectly estimate the flux of energetic particles. This contribution provides an overview of the search for solar-like protostars permeated by energetic particles and the discovery of a protocluster, OMC-2 FIR4, where the phenomenon is presently occurring. This article is part of a discussion meeting issue `Advances in hydrogen molecular ions: H3+, H5+ and beyond'

    Impact of nonconvergence and various approximations of the partition function on the molecular column densities in the interstellar medium

    Get PDF
    We emphasize that the completeness of the partition function, that is, the use of a converged partition function at the typical temperature range of the survey, is very important to decrease the uncertainty on this quantity and thus to derive reliable interstellar molecular densities. In that context, we show how the use of different approximations for the rovibrational partition function together with some interpolation and/or extrapolation procedures may affect the estimate of the interstellar molecular column density. For that purpose, we apply the partition function calculations to astronomical observations performed with the IRAM-30m telescope towards the NGC 7538–IRS1 source of two N-bearing molecules: isocyanic acid (HNCO, a quasilinear molecule) and methyl cyanide (CH3CN, a symmetric top molecule). The case of methyl formate (HCOOCH3), which is an asymmetric top O-bearing molecule containing an internal rotor is also discussed. Our analysis shows that the use of different partition function approximations leads to relative differences in the resulting column densities in the range 9–43%. Thus, we expect this work to be relevant for surveys of sources with temperatures higher than 300K and to observations in the infrared.This work is partly supported by CMST COST Action CM1401 Our Astro-Chemical History and CMST COST Action CM1405 MOLIM. The work of C.F. is supported by the French National Research Agency in the framework of the Investissements d'Avenir program (ANR-15-IDEX-02), through the funding of the "Origin of Life" project of the Universite Grenoble-Alpes. C.C. and C.F. acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, for the Project "The Dawn of Organic Chemistry" (DOC), grant agreement No 741002. I.K. would like to thank the French programme of Chimie Interstellaire PCMI. C.F. and D.F. acknowledge support from the Italian Ministry of Education, Universities and Research, project SIR (RBSI14ZRHR). E.A.B. acknowledges support from NSF (AST-1514670) and NASA (NNX16AB48G). M.C. acknowledges the financial support from FIS2014-53448-C2-2-P (MINECO, Spain), from the Centro de Estudios Avanzados de Fisica, Matematicas y Computacion (CEAFMC) of the University of Huelva and from the Consejeria de Conocimiento, Investigacion y Universidad, Junta de Andalucia and European Regional Development Fund (ERDF), ref. SOMM17/6105/UGR. The authors acknowledge the referee for his/her valuable comments
    corecore